A framework for ML estimation of parameters of (mixtures of) common reaction time distributions given optional truncation or censoring.
نویسندگان
چکیده
We present a framework for distributional reaction time (RT) analysis, based on maximum likelihood (ML) estimation. Given certain information relating to chosen distribution functions, one can estimate the parameters of these distributions and of finite mixtures of these distributions. In addition, left and/or right censoring or truncation may be imposed. Censoring and truncation are useful methods by which to accommodate outlying observations, which are a pervasive problem in RT research. We consider five RT distributions: the Weibull, the ex-Gaussian, the gamma, the log-normal, and the Wald. We employ quasi-Newton optimization to obtain ML estimates. Multicase distributional analyses can be carried out, which enable one to conduct detailed (across or within subjects) comparisons of RT data by means of loglikelihood difference tests. Parameters may be freely estimated, estimated subject to boundary constraints, constrained to be equal (within or over cases), or fixed. To demonstrate the feasibility of ML estimation and to illustrate some of the possibilities offered by the present approach, we present three small simulation studies. In addition, we present three illustrative analyses of real data.
منابع مشابه
Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کاملپیشبینی خشکسالی هیدرولوژیک با استفاده از سریهای زمانی
INTRODUCTION Hydrologic drought in the sense of deficient river flow is defined as the periods that river flow does not meet the needs of planned programs for system management. Drought is generally considered as periods with insignificant precipitation, soil moisture and water resources for sustaining and supplying the socioeconomic activities of a region. Thus, it is difficult to give a univ...
متن کاملEntropy of Hybrid Censoring Schemes
A hybrid censoring scheme is a mixture of type I and type II censoring schemes. When $n$ items are placed on a life test, the experiment terminates under type I or type II hybrid censoring scheme if either a pre-fixed censoring time T or the rth (1<=r<=n is fixed) failure is first or later observed, respectively. In this paper, we investigate the decomposition of entropy in both hybrid cen...
متن کاملInference for the Proportional Hazards Family under Progressive Type-II Censoring
In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric...
متن کاملOn a New Bimodal Normal Family
The unimodal distributions are frequently used in the theorical statistical studies. But in applied statistics, there are many situations in which the unimodal distributions can not be fitted to the data. For example, the distribution of the data outside the control zone in quality control or outlier observations in linear models and time series may require to be a bimodal. These situations, oc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2002